
roar-ng User Manual

roar-ng User Manual

Page 1/9

roar-ng User Manual

Table of Contents
Overview...3
Dependencies..3

roar-ng Itself..3
Result Distribution...3

Distribution Structure..4
The Skeleton..5
Configuration...5

Package List..5
Package Management..6

RXZ... 6
hpm... 6
SFS Extensions..6

Usage Instructions...6
0setup... 6

Usage..7
1download...7

Usage..7
2createpackages...7

Package Templates...7
Package Optimization...8
Package Splitting..8
Redirection..8
Usage..8

3builddistro...8
Usage..8

4buildpackage...8
Usage..9

Page 2/9

roar-ng User Manual

Overview
roar-ng is a generic distribution building system originally forked (but now independent) from
Woof, the Puppy Linux build system.

It provides an architecture-independent, flexible and portable infrastructure for the creation of
fast and portable "live" GNU/Linux distributions. It provides support for the binary package
format and repositories of various GNU/Linux distributions.

The development of roar-ng started as a collection of source hacks of Woof and evolved into a
complete, independent re-implementation. It provides advanced features not found in Woof,
such as parallel downloads, automatic package splitting, simple branding and easy porting to
different processor architectures.

Dependencies
roar-ng has a small number of dependencies and has a small list of packages that must be
present in every distribution built by it.

roar-ng Itself

• A POSIX-compliant shell (either Bash or DASH). /bin/dash is required and may be a
symlink to Bash.

• For support for some distributions: Python 2.x.

• Squashfs tools.

• cdrkit or cdrtools (for either mkisofs or genisoimage, respectively).

• GNU Binutils.

• cpio.

• gzip.

• Squashfs tools.

• For 4buildpackage: Aufs, in the host's kernel.

• For 1download : aria2, for optional parallel downloads.

• AdvanceCOMP.

• OptiPNG.

• XZ Util.

Result Distribution

• Squashfs, built into the kernel image.

• Aufs, built into the kernel image.

• Drivers for all devices and file systems the distribution can boot from, built into the
kernel.

• DASH.

• BusyBox, with mdev.

• dialog.

• e2fsprogs.

• util-linux.

Page 3/9

roar-ng User Manual

• udev.

• iptables.

• hsetroot.

• gtkdialog.

• rxvt-unicode.

• cwm.

• syslinux.

• Librsvg.

• XZ Util.

Distribution Structure
A typical distribution built using roar-ng consists of four parts:

1. An “initramfs”: the standard Linux boot procedure requires an initial file system, which
contains a small operating system and a script (an “init” script) which is able to locate
the “real” (or “main”) file system. This file system is loaded into memory by the boot
loader and the kernel execute the init script. Once it locates this file system, it switches
the file system root (/) to it, using /sbin/switch_root.

2. The main file system, contained in a compressed image placed inside the initramfs.

3. An ISO9660 image which contains a boot loader, the initramfs (which contains the entire
distribution) and a kernel image.

4. A “devx” module; a special SFS extension (see later) which contains development
packages, static libraries, headers, etc'.

It is quite hard to grasp the structure of this complex mess of file systems and images; here's
what the initramfs looks like:

initramfs

a small
distribution and

an init script
main file system (a Squashfs image)

The kernel image and the initramfs are loaded by the boot loader and the kernel executes /init,
which is the initial init script contained in the initramfs. This script mounts a layered file system
which consists of two layers:

1. A bottom, read-only layer which consists of a Squashfs image containing the main file
system (e.g the distribution itself). This is the file system the user sees; the initramfs
gets destroyed.

2. A top, read-write layer which is either a temporary file system (a “ramdisk”, e.g tmpfs)
on “live” sesions, or a writable image file contained on a disk partition, under persistent
sessions. All changes to the file system are saved in this layer.

Once the init script is done setting up the layered file system, it executes /sbin/init, which in
turn, executes the “real” init script. This script performs more “high-level” steps performed
during the boot sequence, such as the execution of daemons.

The advantages of this structure are:

Page 4/9

roar-ng User Manual

1. Speed: since the main file system is contained in the system memory, it is faster to
read. However, since this is wasteful of expensive memory, it is stored in a compressed
form, which is a great compromise between size and consumption of computer
resources. This way, it consumes less memory, while preserving the speed advantage.

2. Portability and file system neutrality: since the initramfs' init script does not need to
properly recognize and mount a disk partition in order to boot the operating system
(since it is contained inside the initramfs already), any boot loader which supports Linux
is enough to successfully boot the distribution.

3. Simplicity: the whole operating system consists of two files – the initramfs and a kernel
image.

4. Small space footprint: only the changes to the distribution's main file system are
actually stored to a partition. Moreover, most the distribution is compressed.

5. Easy administration: in order to revert the operating system to its pristine state, the
save file needs to be deleted and that's it.

6. Easy rescue: if the operating system gets messed up, it is extremely easy to boot it into
a “live” session which can be used to fix the problem.

However, this structure also has several disadvantages:

1. Slightly higher memory consumption.

2. Less transparency; technology-unaware users will find the operating system structure
and implementation extremely hard to understand.

3. It makes it hard to update the operating system, since most of it is read-only; replacing
a core package means rebuilding it.

The Skeleton

The roar-ng “skeleton” is a directory tree which contains core files which provide the unique
features of its output distributions and therefore distinct between roar-ng and its competitors. It
consists of four parts:

1. The main file system skeleton; this portion of the skeleton is the distribution “body”.

2. The initramfs skeleton, used to bridge between the boot loader and the main file
system.

3. The “devx” module skeleton.

4. The ISO9660 image skeleton.

Configuration
roar-ng's configuration consists of three configuration files, contained under the “conf”
directory:

1. “distrorc”: various distribution details, such as its name, version, etc'.

2. “bootrc”: boot settings, mostly related to the initramfs and save files.

3. “package_list”: a list of packages to be included in the result distribution.

Package List

The package list is a text file which contains the list of packages processed by roar-ng. Each
line represents a meta-package (a package containing one or more binary packages of the
same distribution) or a comment (which begins with the “#” character).

Page 5/9

roar-ng User Manual

Each meta-package appears in the following format:

distribution|meta-package name|packages included in it|redirection rules

The redirection rules field contains a list of rules which tell roar-ng how to handle each
component of the meta-package, once it is split by the 2createpackages; read later. Here is an
example redirection rules field:

exe,dev>doc,doc>null,nls

Each module can be either redirected to another module (using the “>” syntax; in this
example, the development files module is redirected to the documentation module), kept
where it is (without any special syntax, as the “exe” and “nls” modules in the example) or
deleted (using the “null” redirection).

Package Management

RXZ

“RXZ” (which stands for “roar-ng XZ”) is the native package format of distributions built using
roar-ng. In contrast with other package formats, such as DEB or RPM packages, which contain
only a subset of the compiled source package, RXZ packages contain whole, raw packages.
They are compressed using LZMA2, through XZ-Util.

hpm

hpm (acronym of “Humble Package Format”) is a simple package manager that handles only
two operations: the installation and removal of binary packages in the RXZ format.

SFS Extensions

“SFS extensions” are dynamically-loadable Squashfs images which contain either big packages
(e.g the kernel sources) or whole suites of packages (e.g an entire desktop environment). They
can be loaded at run-time using /usr/sbin/load_sfs (which pushes them into the layered file
system, below the top, writable layer), but cannot be unloaded.

The advantage of SFS extensions over regular RXZ packages is their ability to be installed and
removed transparently, without leaving any traces or wasting precious space in the save file.

Usage Instructions

0setup

0setup is the first script in the execution chain of roar-ng. Its purpose is to download the
package lists of each supported distribution's package repositories, then convert them to a
simple, common format that provides more efficient searching. Its result package lists are
placed under the “repos” directory.

Its flow is linear and very simple:

for every distribution:
for every repository of the distribution:

download the package list
convert the package list to the common format

Support for various distributions is implemented using a directory hierarchy, rather than
conditions in each script's code. Each distribution has its own directory under “distro”, which

Page 6/9

roar-ng User Manual

contains several files:

1. “repositories”: a list of package repositories, the URL of each repository's package list
and a unique name. In addition, this file contains a list of package download mirrors, so
binary packages can be downloaded from multiple sources concurrently, speeding up
their download.

2. “convert_package_list”: a script which receives a distribution's original package list as a
parameter and outputs a package list in roar-ng's simple format to its standard output.

3. “extract_package”: a script which receives a binary package and an output directory,
then extracts the former into the latter.

Usage

0setup does not receive any parameters:

./0setup

1download

Once 0setup was executed, roar-ng is able to locate the result distribution's packages; that's
where 1download steps in. It is a script which downloads all packages specified in the package
list and puts them under “packages”.

1download was designed to be fast and efficient; download times are slow due to the large
number of packages, so there is very little room for improvement in this area. However, the
procedure used to locate each package and find appropriate download links has been
streamlined and improved, in order to reduce its overhead.

Usage

1download does not receive any parameters:

./1download

It is possible to execute the script multiple times; it will download any extra packages added to
the package list, but packages removed from it will still be present in the “packages” directory.

2createpackages

2createpackages is the package processing script of roar-ng: it processes the packages
downloaded by 1download (and placed under “packages”) and puts their processed contents
under “processed-packages”. Here's how it works:

for each package in the package list:
run its distribution's extract_package script
if there is a package template:

apply the template
optimize the package
split the package

Package Templates

Each binary package downloaded by 1download gets extracted and a special template (located
under “package-templates”) is copied into its directory. This template contains files and
directories added to the script and an optional script, called “hacks.sh”, which runs from the
extracted package's directory and performs extra modifications to it.

Package templates may contain “post_install.sh” (as in native roar-ng packages), which gets
executed in the final stage of roar-ng.

Page 7/9

roar-ng User Manual

Package Optimization

After the package extraction and the basic modifications performed by the “hacks.sh” script,
each package is optimized, non-recursively. Testing shows that recursive optimization (I.e
extraction of archives and optimization of their contents) is extremely slow and provides very
little benefit.

This optimization consists of removal of debugging symbols from binaries, thorough
optimization of images, re-compression of archives and more.

Package Splitting

Each optimized package is split into four parts using the splitpkg script: a main package, a
development files package, a documentation package and language support files package.

Redirection

The redirection feature of roar-ng is very simple: each sub-package's contents can moved to
another or removed. 2Createpackages performs this after the package splitting stage.

Usage

2createpackages does not receive any parameters:

./2createpackages

It is possible to execute the script multiple times; it will process any packages not present
under “processed-packages”.

In order to re-process a package (for instance, because it was replaced), the processed package
must be deleted first:

cd processed-packages
rm -rf $name ${name}_DEV ${name}_DOC ${name}_NLS

3builddistro

3builddistro is the final script of roar-ng. It builds a bootable ISO9660 image of the distribution,
according to the supplied configuration. All its output is contained under the “sandbox3”
working directory.

The script uses a skeleton for each component of its output; see the “skeleton” directory. The
skeletons of the initramfs, root file system and the “devx” module consist of multiple parts
(each in its own directory), while the ISO9660 image's doesn't.

It is recommended to edit the script before its execution, in order to tweak various parameters,
such as the default desktop background.

Usage

3builddistro does not receive any parameters:

./3builddistro

4buildpackage

4buildpackage is a fourth, extra script which provides the ability to build RXZ packages,
according to build scripts contained under the “devx” module's skeleton. It is the successor of a
tool called “Builder”, which performs automatic package building, in a more complex way.

Each package built by the script is placed under “built-packages” and its source files are
downloaded automatically by the script, into sandbox3/rw/tmp/build/$name. If a directory
bearing the package name exists under “sources” prior to the script's execution, its contents

Page 8/9

roar-ng User Manual

are copied to that directory, speeding up the building process by shortening or eliminating
download times. However, source files are not copied back into the sources directory: this has
to be done manually.

Usage

4buildpackage receives only one parameter, which is the package name:

./4buildpackage $package

The script must be executed after 3builddistro, as it performs the package building inside a
chroot jail of its output.

Page 9/9

	Overview
	Dependencies
	roar-ng Itself
	Result Distribution

	Distribution Structure
	The Skeleton
	Configuration
	Package List

	Package Management
	RXZ
	hpm
	SFS Extensions

	Usage Instructions
	0setup
	Usage

	1download
	Usage

	2createpackages
	Package Templates
	Package Optimization
	Package Splitting
	Redirection
	Usage

	3builddistro
	Usage

	4buildpackage
	Usage

